Mapping between quantum and classical dynamics

Consider an ergodic system in the quasiclassical regime $=$ the characteristic spatial scales of change of observables are $>$ the unarelenpth

split the system into mall pieces where the systern is roughly homageneans

The sire of one such piece is $d \vec{R}$ The sire is still assumed t be large compared to the wavelength. Then it we insert hard walls between those pieces (the boundary conditions will not matter) it mil not affect the thermodynamics in equilibrium
$\frac{d \vec{R} d \vec{p}}{(2 \pi \hbar)^{f}}$ - the umber of states in this pice e with moments in the element $d \vec{p}$

(For a 3D particle

$$
i t \& \frac{v}{\left.(2 \pi k)^{3}\right)}
$$

(See also handau-hitshits v.3, §48)

In general,

In general,

$$
N=\frac{\Gamma}{(2 \pi \hbar)^{r}}
$$

